
 

 

Revista Brasileira de Agricultura Irrigada v.8, nº. 2, p. 77 - 85, 2014 

ISSN 1982-7679 (On-line) 

Fortaleza, CE, INOVAGRI – http://www.inovagri.org.br 

DOI: 10.7127/rbai.v8n200224 

Protocolo 224/14 – 12/09/2013 Aprovado em 10/03/2014 
 

 

 

ARTIFICIAL NEURAL NETWORK BASED EQUATION TO ESTIMATE 

HEAD LOSS ALONG DRIP IRRIGATION LATERALS  

 

 

Acácio Perboni
1
, José Antonio Frizzone

2
, Antonio Pires de Camargo

3
 

 

 

ABSTRACT 

This work proposes an equation based on Artificial Neural Network (ANN)           

to estimate head loss along emitting pipes accounting for cylindrical in-line 

emitters. The following input variables were used to fit the model: total head loss 

between two consecutive emitters; emitter spacing; internal diameter of the 

pipe; mean water velocity at uniform pipe sections; and, kinematic viscosity of 

water. The input data was obtained by experimental means and standardized from  

0 to 1. Five replications and six distinct structures of ANNs multilayer perceptron 

(MLP) were used during the training stage performed using the package neuralnet 

of the software R. A MLP structure consisting of six neurons at input layer,           

six neurons at hidden layer, and one neuron at output layer was applied for fitting 

the model. Estimated values by the ANN’s equation were compared to the 

estimated values by an equation based on dimensional analysis. The ANN’s 

equation and the equation based on dimensional analysis presented maximum 

deviations between measured and estimated values of 0.324 kPa and 1.647 kPa, 

respectively. Therefore the ANN’s equation presented better results than the 

equation based on dimensional analysis. 
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Propor uma equação ajustada com rede neural artificial (ANN) para estimar a  

perda de carga em tubos emissores com emissores “in-line” do tipo cilíndrico, 

motivou a realização do presente estudo. As variáveis de entrada do modelo:    

perda de carga que ocorre entre dois emissores consecutivos; espaçamento entre 

emissores; diâmetro interno do tubo; área média da seção transversal de 

escoamento do emissor; velocidade média de escoamento da água no tubo e 

viscosidade cinemática da água foram obtidas experimentalmente e normalizadas 

no intervalo de 0 a 1. Cinco repetições para cada uma das seis diferentes    

estruturas de ANNs do tipo perceptron de múltiplas camadas (MLP) foram 

treinadas no pacote neuralnet do software R. A estrutura MLP com seis     

neurônios na camada de entrada, seis na oculta e um na camada de saída foi 

escolhida para desenvolver o modelo. Os modelos de ANN e análise dimensional, 

apresentaram erro absoluto máximo de 0.324 kPa e 1.647 kPa, respectivamente. 

Conclui-se que ANNs melhoraram o ajuste em relação ao modelo de análise 

dimensional. 

Palavras-chave: microirrigação, modelo, ajuste 
 

 

 

 

 

INTRODUCTION 

 

Artificial Neural Networks (ANNs) are 

inspired by the human brain and based on 

mathematical models that enables capabilities 

of learning and storage from experimental 

knowledge. Artificial neurons are the 

constitutive units in an ANN.  

A multilayer perceptron (MLP) is a 

feedforward ANN consisting of layers 

connected by synapses that can be applied on 

modeling functional relationships. The input 

layer consists of all covariates in separate 

neurons and the output layer consists of the 

response variables. The layers in-between are 

referred to as hidden layers, as they are not 

directly observable. Input layer and hidden 

layers include a constant neuron relating to 

intercept synapses, i.e. synapses that are not 

directly influenced by any covariate. To each 

of the synapses, a weight is attached 

indicating the effect of the corresponding 

neuron, and all data pass the neural network 

as signals. The signals are processed first by 

the so-called integration function combining 

all incoming signals and second by the so-

called activation function transforming the 

output of the neuron (GÜNTHER; FRITSCH, 

2010). 

Martí et al. (2010) assessed models for 

estimating local head losses of integrated 

drippers. They compared results obtained by 

models   based   on  linear  regression  against  
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models based on ANNs and they concluded 

that models based on ANNs presented better 

performance on estimating local head losses.  

Perboni (2012) compared a model based 

on multiple regression with another one based 

on dimensional analysis. Both models were 

developed for estimating the head loss along 

pipes accounting for in-line cylindrical 

emitters. The model based on dimensional 

analysis presented lower deviation between 

estimated and observed values than the model 

based on multiple regression.  

This work proposes the use of ANNs to 

improve the performance of models for 

predicting head losses along emitting pipes 

accounting for cylindrical in-line emitters. In 

addition to the work of Martí et al. (2010), we 

also present an ANN’s equation that enables 

to simulate scenarios using a spreadsheet 

application.    

 

 

 

 

 

 

MATERIAL AND METHODS 

 

The term  express the total head loss 

between two consecutive emitters. By this 

approach, data analysis is easier to perform 

and  the  model  becomes  easier  to  use.  The  

 

proposed model considers that  is the sum 

of friction and local head losses (Eq. 1). 

Friction head loss between two consecutive 

emitters was expressed by the Darcy-

Weisbach formula, where the pipe length ( ) 

was replaced with the distance between two 

consecutive emitters ( ). The local head loss 

was calculated based on Borda-Carnot 

equation considering the mean cross-sectional 

area of flow where an emitter is located 

( ). 

 

 
(1) 

 

 

Where:  

hfSe= total head loss between two consecutive 

emitters (m);  

=friction coefficient  of  the  Darcy-

Weisbach  formula  (-); 

=emitter spacing (m);  

=internal diameter of the pipe (m); 

=mean cross-sectional area of flow where 

an emitter is located (m
2
);  

=cross-sectional area of the pipe (m
2
);  

= mean water velocity at uniform pipe 

sections (m s
-1

); and,  

=gravitational acceleration (m s
-2

). 
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Eq. (2) resulted from Eq. (1) and it 

presents a theoretical model for estimating 

total head loss between two consecutive 

emitters, which considers the friction 

coefficient given by the Blasius equation.  

 

 

 
(2) 

 

 

Where:  

 = kinematic viscosity of water (m
2
 s

-1
). 

 

Therefore, the following relation can be 

defined: 

 

 
(3) 

 

where:  

 is a funcional symbol. 

 

The variables listed in Eq. (3) are the 

input variables of the model and were 

determined by experimental means. The 

exception was the gravitational acceleration 

( ), which is a constant, and At that in 

determined based on  values. 

The experimental data of hfSe, Vt, Dt, ν, 

Se was obtained from a research carried out at 

the Irrigation Laboratory of the Department of 

Biosystems Engineering, University of São 

Paulo, Piracicaba, Brazil. The tests were 

performed in a closed circuit system (Figure 

1) described in detail by Perboni (2012).   

 

 
Figure 1. Schema of the facility for head loss 

tests. 

 

 

Mean cross-sectional area of flow 

where an emitter is located ( ) was 

determined indirectly based on the volume of 

distilled water required to fill up a cylinder of 

pipe wherein the emitter was assembled. 

Eight samples (cylinders) were extracted from 

each model of emitting pipe. The length of 

each sample was exactly the length occupied 

by an emitter inside the pipe. The samples 

were sealed at one side in order to allow 

filling it up with water. Samples empty and 

filled up with water were weighed using a 

digital balance (accuracy 0.01 g). The value 

of  of each sample resulted from the water 
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volume inside each cylinder divided by its 

length. A digital caliper (accuracy  0.01 mm) 

was used to measure the cylinder length.  

The R software (version 2.15.1) was 

employed to data analysis (R. 

DEVELOPMENT CORE TEAM, 2012). The 

Neuralnet package enabled implementation of 

artificial neural networks routines. Details 

about the Neuralnet package may be found at 

Günther e Fritsch (2010).  

A multilayer perceptron with resilent 

backpropagation supervised learning 

algorithm was used for simulation of hfSe. A 

logistic transfer function was selected 

between the input and hidden layers, and a 

logistic transfer function selected between the 

hidden and output layer.  

The package Neuralnet enables to 

export the synapses weights and consequently 

an equation can be determined. Based on the 

equation, an electronic spreadsheet is enough 

to simulate various scenarios. 

The input data were normalized from 0 

to 1 (Eq. 4) to improve the efficiency of the 

neural network training stage.  

 

 

(4) 

 

Where: xnorm = normalized value;  

xo = original value; 

xmax = maximum value; and, 

xmin = minimum value.  

 

The dataset was randomly arranged into 

two subgroups. Seventy percent of the data 

was  arrange in a subgroup for training the 

ANN while thirty percent of the data was kept 

in the other subgroup reserved for model  

validation.   

The performance of the neural network 

models was evaluated by the sum of squared 

errors (SSE) and root mean square error 

(RMSE) as presented in Eq. [5] and Eq. [6], 

respectively. 

 

 

(5) 

 

Where,  the  subscripts  o  and  s  represent  

the observed and simulated values of head 

loss between consecutive emitters (hfSe), 

respectively. The index and the total number 

of events are represented by i and n, 

respectively.  

 

 

(6) 

 

The overall performance of trained 

networks  was  assessed  based  on  the 

RMSE and  the  coefficient  of  determination  

(R²). 
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RESULTS AND DISCUSSION 

 

Model input data  

 

Table 1. Geometric and hydraulic 

characteristics of the emitting pipes  

E
m

it
ti

n
g

 p
ip

e 

Picture  

of 
 emitter 

 

 (m) 

 

(m) 

Dt  

(mm) 

 

 (mm²) 

Relation 

pressure-

flow rate 

 

    
      

1 

 

9.80 0.98 13.60 0.15 108.74 2.13 2.048 0.064 

2 

 

10.14 0.78 13.91 0.22 105.10 1.91 2.592 -0.027 

3 

 

9.90 0.90 13.75 0.07 109.35 2.06 3.994 0.001 

4 

 

10.40 0.52 13.57 0.16 107.45 2.04 1.518 0.092 

5* 

 

10.50 0.50 13.65 0.23 110.01 1.45 0.045 0.625 

6 

 

10.36 0.74 13.49 0.18 105.76 2.14 2.722 -0.017 

7 

 

10.27 0.79 15.01 0.17 135.97 2.47 1.659 0.046 

8 

 

10.36 0.74 15.22 0.17 137.03 1.90 3.380 -0.043 

9* 

 

10.40 0.20 17.12 0.24 197.97 1.64 0.106 0.500 

10* 

 

10.20 0.60 15.67 0.37 191.46 1.76 0.132 0.520 

11 

 

10.40 0.40 14.28 0.30 187.94 1.57 1.650 0.038 

12 

 

10.50 0.30 17.30 0.39 189.96 1.64 0.644 0.072 

L=Length of the emitting pipe;  and = coefficients 

of the pressure-flow rate function; * =non pressure-

compensating drippers. 

Normalization of the input data  

 

The data of the training subgroup was 

normalized following the maximum and 

minimum values shown in Table 2.  

 

Table 2. Maximum and minimum values for 

data normalization. 
 

HfSe 

observed 

(m) 

Se 

(m) 

Dt  

(m) 

Vt  

(m s-1) 

V 

 (m s-1) 

Aem 

 (m²) 

Maximum 1.098 0.98 0.01730 2.80 0.00000131 0.00019797 

Minimum 0.001 0.20 0.01349 0.18 0.00000066 0.00010510 

 

 

Definition of the optimal ANN structure 

 

Six runs assessing the number of 

neurons in the hidden layer were performed. 

For each condition, five repetitions were 

performed. Figure 2 shows an example of 

MLP ANN with six neurons in the input 

layer, three neurons in the hidden layer and 

one neuron in the output layer.   

 
Figure 2. MLP with six neurons in the input 

layer, three in the hidden layer and one in the 

output layer. 
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In the Table 3 are presented the results 

of performance of different structures of 

neural networks. 

 

 

 

Table 3. Summarized results for determining the 

optimal network  

N
et

w
o

rk
 s

tr
u

ct
u

re
 

SSE (m) RMSE R² 

T
ra

in
in

g
 

V
al

id
at

io
n
 

T
ra

in
in

g
 

V
al

id
at

io
n
 

T
ra

in
in

g
 

V
al

id
at

io
n
 

6-3-1 0.1835 0.4537 0.0179 0.0281 0.9944 0.9587 

6-4-1 0.1482 0.0532 0.0161 0.0096 0.9955 0.9952 

6-5-1 0.0722 0.0327 0.0112 0.0075 0.9978 0.9970 

6-6-1 0.0804 0.0186 0.0118 0.0057 0.9975 0.9983 

6-7-1 0.0364 0.0104 0.0079 0.0042 0.9989 0.9991 

6-8-1 0.0580 0.0188 0.0100 0.0057 0.9982 0.9983 

 

 

Comparing the network structures 6-6-1 

with 6-7-1 the first one presented higher 

values of SSE and RMSE and smaller values 

R² for both training and validation stages. The 

structure 6-6-1 was preferred because of the 

lower complexity of the equation of this ANN 

structure and because of small differences 

with the structure 6-7-1. The weights adjusted 

during the training stage of the network were 

exported and used for generating an equation 

presented in Table 4.     

 

 

 

Table 4. Syntax (Excel spreadsheet) of the 

artificial neural network based equation to 

estimate hfSe (m). 
hfSe =0.000969230769230769+((1.09849090909091-

0.000969230769230769)*(1/(1+EXP(-(((1/(1+EXP(-

(10.7813260047022*((H10-0.2)/(0.98-0.2))+(-

40.3065786351474)*((I10-0.01348775)/(0.017299-

0.01348775))+((J10-0.184369984370609)/(2.80151262245965-

0.184369984370609))*0.104821757020942+(-

0.0874513828307588)*((K10- 0.00000066)/(0.00000066))+(-

81.9027365883784)*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+(-

1.62990957971955)))))*5.51777399375251)+((1/(1+EXP(-

(7.42742967425067*((H10-0.2)/(0.98-0.2))+(-

4.11228961882758)*((I10-0.01348775)/(0.017299-

0.01348775))+((J10-0.184369984370609)/(2.80151262245965-

0.184369984370609))*(-1.15292854653071)+(-

0.0881370123739626)*((K10-0.00000066)/(0.00000131-

0.00000066))+(-95.5149154978041)*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+(-0.405057418373449)))))*(-

5.25710864729487))+((1/(1+EXP(-

((1.18370865413044)*((H10-0.2)/(0.98-0.2))+(-

9.82653078464961)*((I10-0.01348775)/(0.017299-

0.01348775))+((J10-0.184369984370609)/(2.80151262245965-

0.184369984370609))*(-2.0030561488858)+(-

0.0383213504652739)*((K10-0.00000066)/(0.00000131-

0.00000066))+11.7616535985439*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+(1.41681221975827)))))*(-

3.86750206180446))+((1/(1+EXP(-(0.558087626804475*((H10-

0.2)/(0.98-0.2))+0.496913927891842*((I10-

0.01348775)/(0.017299-0.01348775))+((J10-

0.184369984370609)/(2.80151262245965-

0.184369984370609))*10.8092200112521+0.131769857529378

*((K10-0.00000066)/(0.00000131-0.00000066))+(-

1.13103785514986)*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+(-

2.20007430865564)))))*2.32240827563296)+((1/(1+EXP(-

(2.8789398398758*((H10-0.2)/(0.98-0.2))+(-

1.0991457746721)*((I10-0.01348775)/(0.017299-

0.01348775))+((J10-0.184369984370609)/(2.80151262245965-

0.184369984370609))*2.74862311919179+0.039153969866697

6*((K10-0.00000066)/(0.00000131-

0.00000066))+2.08759495690066*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+(-

7.78232584891977)))))*30.4517568304332)+((1/(1+EXP(-((-

1.09055922734043)*((H10-0.2)/(0.98-

0.2))+1.1305534378051*((I10-0.01348775)/(0.017299-

0.01348775))+((J10-0.184369984370609)/(2.80151262245965-

0.184369984370609))*0.0204773450992123+0.2499722128513

87*((K10-0.00000066)/(0.00000131-0.00000066))+(-

1.69502293148182)*((L10-

0.000105104816706743)/(0.000197973869026579-

0.000105104816706743))+1.61949546756514))))*(-

0.00255897002824903))+(-1.3362295870735)))))) 

Where: H10 represents Se, m; I10 represents Dt, m; J10 

represents Vt, m s
-1

; K10 represents ν, m² s
-1

; L10 

represents Aem, m². 
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The equation takes into account the 

normalization of input data and it is valid for 

the range of values presented in Table 2, 

which were obtained from head loss tests. 

 

Model validation 

 

Based on the subgroup reserved for 

validating the model, the absolute maximum 

error between estimated and observed values 

of head loss was 0.033 m (Figure 3A). Such a 

value was lower than that obtained by the 

model developed by Perboni (2012), which 

was 0.1682 m (Figure 3B).   

 

   

  

 
Figure 3. A) ANN model; B) Perboni (2012) 

model. 

 

 

The ANN based equation presented 

better results than those obtained by an 

equation based on dimensional analysis 

(PERBONI, 2012). Although ANNs are more 

complex than other methodologies for fitting 

models, it is possible to present an equation 

that can be implemented in an electronic 

spreadsheet like Excel and consequently the 

predictions can be done easily.     

 

 

 

ACKNOWLEDGEMENTS 

 

The authors are grateful to 

NaanDanJain for providing emitting pipes 

used to accomplish this research as well as the 

following Brazilian Institutions for their 

financial support: Federal Department of 

Science and Technology (MCT). National 

Scientific and Technological Development 

Council (CNPq). Sao Paulo State Scientific 

Foundation (FAPESP) and National Institute 

of Science and Technology in Irrigation 

Engineering (INCTEI). 

 

 

 

 

 

 

REFERÊNCIAS BIBLIOGRÁFICAS 

 

FRITSCH, S.; GUENTHER, F.  neuralnet: 

Training   of   Neural   Networks.  R  package  

version 1.32, 2013. Disponível em <http: 

//cran.r-project.org/web/packages/neuralnet 

/neuralnet.pdf> 



85 

ARTIFICIAL NEURAL NETWORK BASED EQUATION TO ESTIMATE HEAD LOSS ALONG DRIP 

IRRIGATION LATERALS 

Rev. Bras. Agric. Irr. v. 8, nº.2, Fortaleza, p. 77 - 85, Mar - Abr, 2014 

R DEVELOPMENT CORE TEAM R.A 

language and environment for statistical 

computing.Vienna, R Foundation for 

Statistical Computing, 2012.URL 

http://www.R-project.org 

 

Fritsch, S.; Guenther, F.  neuralnet: Training 

of Neural Networks. R. News, v. 1, n. 2, p. 

30-38, 2010. 

 

MARTÍ,        P.;       PROVENZANO,       G.;  

ROYUELA, Á.; PALAU-SALVADOR, G. 

Integrated   Emitter   Local   Loss   Prediction  

Using Artificial Neural Networks. Journal of 

irrigation and drainage engineering, New 

York, v. 136, n. 1, p. 11-22, 2010. 

 

PERBONI, A. Modelo para determinar 

perda de carga em tubos emissores. 2012. 

70 f. Dissertação (Mestrado em Ciências) – 

Escola Superior de Agricultura “Luiz de 

Queiroz”, USP, Piracicaba. Disponível em 

<http://www.teses.usp.br/teses/disponiveis/11

/11143/tde-16082012-090029/pt-br.php>. 

Acesso em 08 de setembro de 2013. 

 


